AtlasScientific Environmental Robotics

V 1.3

Wi-Fi Pool Kit Setup Guide

Atlas Scientific does not make consumer electronics.

This equipment is intended for electrical engineers. If you are not familiar with electrical engineering or embedded systems programing, this product may not be for you.

This device was developed and tested using a Windows computer. It was not tested on Mac, Atlas Scientific does not know if these instructions are compatible with a Mac system.

IP64 (dust and water splash proof)

Operating principle

The Wi-Fi Pool Kit has been designed to provide the engineer with a simple way of remotely monitoring and controlling a pools system's chemistry. Sensor data is uploaded to ThingSpeak [™], a free, cloud-based data acquisition and visualization platform. The Wi-Fi Pool Kit has also been designed to be easily modified by the engineer. Feel free to change the sensors or functionality of the device to meet your specific needs.

Overview

CPU

The Wi-Fi Pool Kit is controlled using an Adafruit Feather HUZZAH as its CPU. The HUZZAH is programmed using the Arduino IDE and uses an onboard ESP8266 as its Wi-Fi transmitter. <u>Adafruit Feather HUZZAH datasheet.</u>

Sensor ports

The Wi-Fi Pool Kit PCB has 5 sensor ports. Three of the ports are electrically isolated. The isolated ports are marked pH, ORP, and AUX. The isolated ports are needed to take noise-free electrochemical readings. Because the sensing element of a temperature sensor is never in direct contact with the water, electrical isolation is not needed for temperature sensing.

The AUX port can be used to add an additional sensor of your choice. The terminal block marked Port 5 has been designed to connect one or more dosing pumps to the device. However, the port could also be used to connect a gas sensor.

PCB

The overall design of the PCB is quite simple. The CPU is powered and programmed through the panel-mount USB connector. The CPUs onboard voltage regulator supplies the board's power bus with 3.3V at 500 mA peak. All connected sensors are running at 3.3V.

Each of the four main sensor ports have an enable pin, which must be set correctly to power the sensor. The enable pins are found here:

The first three pins (pH, ORP and Aux) must be set low to power on the sensor. The last pin (Temp) must be set high to power on the sensor.

Truth table

Pin	State	Sensor Power
pH EN	LOW	ON
ORP EN	LOW	ON
Aux EN	LOW	ON
Temp EN	HIGH	ON

Sensor port 5 (the terminal block) does not have an enable pin and can not be turned off.

Data protocol

The CPU communicates with all peripheral sensors using the I2C data protocol. All data lines are directly connected to the CPUs I2C port. Using a different data protocol with this circuit board is not possible.

It is important to keep in mind that all Atlas Scientific components default to UART mode. When adding a new Atlas Scientific component to the kit, it must first be put into I2C mode. Refer to the component's datasheet for instructions on how to switch it over.

Adding more of the same sensor or component type

Adding additional components of the same type, such as an additional pH or ORP sensor, is not hard to do. As mentioned above, you must set the device to I2C mode, and you must make sure that its I2C address is not the same as the already existing component.

This table lists the default I2C address of components commonly added to this kit.

Device	I2C Address	Device	I2C Address
EZO pH	99 (0x63)	EZO EC	100 (0x64)
EZO ORP	98 (0x62)	EZO RTD	102 (0x66)
EZO DO	97 (0x61)	EZO PMP-L	109 (0x6D)

Dosing pump

An optional dosing pump can be added to the Wi-Fi Pool Kit. Using both the <u>Large</u> <u>Embedded Dosing Pump</u> and our sensor bridge is the simplest way to add on a dosing pump.

You can directly connect an EZO Pump to the Wi-Fi Pool Kit without the sensor bridge however you must remove the data cable connector and manually put the pump into I2C mode.

Uploading sensor data to the cloud

The Atlas-Scientific Wi-Fi Pool Kit has been designed to upload sensor data to ThingSpeak [™], a free, cloud-based data acquisition and visualization platform. You will be required to set up a free account with ThingSpeak [™] to upload and visualize the data. With a free account, you can upload data once every 15 seconds. A paid account lets you upload data once per-second; look <u>here</u> for more info about various ThingSpeak [™] services.

Atlas Scientific has no business relationship with ThingSpeak [™]; we just like how it works. If you want to use a different service, modify the device as you see fit.

Setting up your Wi-Fi kit

Step 1 Setup a ThingSpeak Account

Because the sensor data is stored / viewed on ThingSpeak, you will need to setup a ThingSpeak account. Create your ThingSpeak account by clicking <u>HERE</u>.

ThingSpeak[™] Channels Apps Support→

Commercial Use How to Buy

To use ThingSpeak, you must sign in with your existing MathWorks account or create a new one.

Non-commercial users may use ThingSpeak for free. Free accounts offer limits on certain functionality. Commercial users are eligible for a time-limited free evaluation. To get full access to the MATLAB analysis features on ThingSeak, log in to ThingSpeak using the email address associated with your university or organization.

To send data faster to ThingSpeak or to send more data from more devices, consider the paid license options for commercial, academic, home and student usage.

Step 2 Create a Channel

Your data is uploaded to ThingSpeak through a 'Channel.' Select New Channel

Fill out the highlighted boxes. (Be sure to click on the checkboxes to enable **field 2** and **3**) For reference, this is what we entered.

Name Atlas Sensors Field 1 pH Field 2 ORP (mV) Field 3 Temp (°C)

Scroll to the bottom of the page and click Save Channel.

Step 3 Get ThingSpeak API keys

After you saved your channel settings, you will be redirected to your channel page. Click on **API keys**.

Be sure to save your **Channel ID** and **Write API Key** we are going to need these, in the next few steps.

Step 4 Make sure your Arduino IDE libraries are up to date

A Make sure you have the correct path for the Esp8266 Library

In the IDE, go to **File > Preferences**

Locate the **Additional Boards Manager URLS** text box.

Preferences		×
Settings Network		
Sketchbook location:		
C:\Users\Noah\Documents\Arduino		Browse
Editor language: System Default	✓ (requires restart of Arduino)	
Editor font size: 12		
Interface scale: Automatic 100 + % (requires restart	of Arduino)	
Theme: Default theme \checkmark (requires restart of Arduir	10)	
Show verbose output during: compilation upload		
Compiler warnings: None \checkmark		
Display line numbers	Enable Code Folding	
☑ Verify code after upload	Use external editor	
Check for updates on startup	Save when verifying or uploading	
Use accessibility features		
Additional Boards Manager URLs: http://arduino.esp8266.com/stable/packag	ge_esp8266com_index.json	
More preferences can be edited directly in the file		
C: \Users \Woah \AppData \Local \Arduino 15 \preferences.txt		
(edit only when Arduino is not running)		
	OK	Cancel

Make sure this URL is in the textbox http://arduino.esp8266.com/stable/package_esp8266com_index.json Click **OK**.

B Update the esp8266 board

In the IDE, go to Tools > Board > Boards Manager

File Edit Sketch To	ols Help			
	Auto Format	Ctrl+T		
	Archive Sketch			
	Fix Encoding & Reload			
	Manage Libraries	Ctrl+Shift+I		
enum reading_ //step 1 tell	Serial Monitor	Ctrl+Shift+M	EVICES, READ_RESPONSE };	
//step 2 cons	Serial Plotter	Ctrl+Shift+L		
//step 4 tell //step 3 cons	WiFi101 / WiFiNINA Firmware Updater		g we just received	
enum reading	Board:		Boards Manager	
chun icuding_	Upload Speed: "115200"	2		
bool polling	CPU Frequency: "80 MHz"	;	Arduino AVR Boards	
bool send_to_	Flash Size: "4MB (FS:2MB OTA:~1019KB)"	;	Arduino Yún	
int return_co	Debug port: "Disabled"	;	Arduino Uno	
	Debug Level: "None"	;	Arduino Duemilanove or Diecimila	
uint32_t next	IwIP Variant: "v2 Lower Memory"	;	Arduino Nano	
unsigned int	VTables: "Flash"	2	Arduino Mega or Mega 2560	
	Exceptions: "Legacy (new can return nullptr)"	2	Arduino Mega ADK	
const unsigne	Erase Flash: "Only Sketch"	;	Arduino Leonardo	
const unsigne	SSL Support: "All SSL ciphers (most compatible)"	2	Arduino Leonardo ETH	
const unsigne	Port	;	Arduino Micro	
	Get Board Info		Arduino Esplora	
void setup()	Programmer: "AVRISP mkll"	;	Arduino Mini	
pinMode(EN_	Burn Bootloader		Arduino Ethernet	
pinMode (EN EC	, 0012011,			1

🚳 Boards Manager	×
Type All v esp8266	
esp8266 by ESP8266 Community version 2.6.3 INSTALLED Boards included in this package: Generic ESP8266 Module, Generic ESP8285 Module, ESPDuino (ESP-13 Module), Ada XinaBox CW01, ESPresso Lite 1.0, ESPresso Lite 2.0, Phoenix 1.0, Phoenix 2.0, Noc (ESP-12E Module), Olimex MOD-WIFI-ESP8266(-DEV), SparkFun ESP8266 Thing, Sp Board, SweetPea ESP-210, LOLIN(WEMOS) D1 R2 & mini, LOLIN(WEMOS) D1 min Pr R1, ESPino (ESP-12 Module), ThaiEasyElec's ESPino, WifInfo, Arduino, 4D Systems of Amperka WiFi Slot, Seeed Wio Link, ESPectro Core, Schirmilabs Eduino WiFi, ITEAD Online Help	ruit Feather HUZZAH ESP8266, Invent One, eMCU 0.9 (ESP-12 Module), NodeMCU 1.0 arkFun ESP8266 Thing Dev, SparkFun Blynk b, LOLIN(WEMOS) D1 mini Lite, WeMos D1 en4 IoD Range, Digistump Oak, WiFiduino, Sonoff, DOIT ESP-Mx DevKit (ESP8285).
Select version Install	Update Remove
	Close

In the search bar of the Boards Manager, lookup **esp8266.** Update to the most recent version if you don't already have it.

(Version 2.6.3 in not the most recent version)

C Download the ThingSpeak library for Arduino

Click <u>HERE</u> to download the latest version of the ThingSpeak library.

Don't unzip it!

Import the .ZIP file into your Arduino IDE. To import the .ZIP file go to **Sketch > Include Library > Add .ZIP Library**

File	Edit	Sket	ch Tools Help							
0	Ð		Verify/Compile	Ctrl+R						
			Upload	Ctrl+U						
			Upload Using Programmer	Ctrl+Shift+U						
enu	m re		Export compiled Binary	Ctrl+Alt+S	D.C	OMPENSATI	F REQUEST	DEVICES REA	D RESPONSE 1.	
//s	tep		Show Sketch Folder	Ctrl+K	ng	oni Liorn	L, REQUEST_			
//s	tep		Include Library				\triangle			
//s	step step		Add File			Manage L	ibraries	Ctrl+Shift+	1	
						Add .ZIP L	.ibrary			

D Add the EZO I2C Library

To download the Ezo_I2c library file, click <u>HERE</u>.

양 master → 양1 branch ⊙0 tags				Go to file	<u></u>	ode 🔻
Atlas-Scientific removed redundant exa	mples, aquaponics kit has pump code by c	Ъ- НТТ	Clone PS GitHub CLI			?
Examples	removed redundant examples, aquapon	ht	ttps://github.c	:om/Atlas-Scient	ific/	Ľ
Ezo_i2c.cpp	added the get_address() method to the	Use	Git or checkout wit	h SVN using the web	o URL.	
🗋 Ezo_i2c.h	added the get_address() method to the	r+1	Onen with City	Hub Desister		
Ezo_i2c_util.cpp	Created libraries for common functions	÷	Open with Git	Hub Desktop		
🖺 Ezo_i2c_util.h	Created libraries for common functions	6	Download ZIP			
	Initial commit				2 yea	irs ago
README.md	Update README.md				18 da	ys ago

Don't unzip it!

Import the .ZIP file to your Arduino IDE. To import the .ZIP file go to **Sketch > Include Library > Add .ZIP Library**

Step 5 Flash the Pool kit with the correct code

A Select, open and adjust the code you want to use for your Wi-Fi Kit

File> Examples> EZO_I2C_lib-master> Examples> IOT_kits> pool_kit

🥯 pool_kit Arduino 1.8.13						
File Edit Sketch Tools Help						
New Ctrl+N						
Open Ctrl+O						
Open Broomt						
Open Recent /						
Sketchbook >>						
Examples	A		//include esp826	ob Wifi Library		
Close Ctrl+W	US.Analog /		//include things	speak library		
Save Ctrl+S	04.Communication >		//imports a 4 fu	inction sequencer		
Save As Ctrl+Shift+S	05.Control >		//imports a l fu	inction sequencer		
	06.Sensors >		//brings in comm	non print statements		
Page Setup Ctrl+Shift+P	07.Display >	ary from ht	tps://github.com/Atlas-	Scientific/Ezo_I2c_lib		
Print Ctrl+P	08.Strings	rary				
Profesences Ctrl+ Comma	09.USB >					
	10.StarterKit BasicKit		//declare that th	his device connects to a Wi-Fi network,create a conne		
Quit Ctrl+Q	11 ArdwinolSB					
12 // r	TLAIduinoise 2	ak Credentia	als			
13 const String ssid =	Examples for any board		//The name of th	ne Wi-Fi network you are connecting to		
14 const String pass =	Adafruit Circuit Playground		//Your WiFi netw	work password		
15 const long myChanne	Bridge		//Your Thingspea	ak channel number		
16 const char * myWrit	Esplora >	;	//Your ThingSpea	ak Write API Key		
17 //	Ethornet					
18	Ethemet /					
19	Firmata					
20 Ezo_board PH = Ezo_	GSM >	/create a Pi	H circuit object, who's	address is 99 and name is "PH"		
21 Ezo_board ORP = Ezc	LiquidCrystal >	/create an ORP circuit object who's address is 98 and name is "ORP"				
22 Ezo_board RTD = Ezc	Robot Control >	/create an RTD circuit object who's address is 102 and name is "RTD"				
23 Ezo_board PMPL = Ez	Robot Motor >	/create an PMPL circuit object who's address is 109 and name is "PMPL"				
24	SD >	>				
25 Ezo_board device_li	Servo >	rds used for	r sending commands to a	all or specific boards		
26 PH,	SpacebrewYun >					
27 ORP,	Stepper >					
28 RTD,	Temboo					
29 PMPL						
30 };	RETIRED					
31	Examples for Arduino Uno					
32 Ezo_board* default_	EEPROM >	sed to store	e the board were talkin	ng to		
33	SoftwareSerial >					
34 //gets the length c	SDI SOITHAICSCHAI	we dont hav	ve to change the number	every time we add new boards		
35 const uint8_t devid	3F1 /	ist) / size	of(device_list[0]);			
36	wire					
37 //enable pins for e	Examples from Custom Libraries					
38 const int EN_PH = 1	Ezo I2c lib-master	Examples	I2c lib examples >			
39 const int EN_ORP =	ThingSpeak >		IOT kits	aquaponics kit		
40 const int EN_RTD =	V		Projects	hydroponics kit		
41 const int EN_AUX =	7		Foreigner Channel	hydropolitics_ht		
			Sequencer_lib_examples			
				pool_kit		
				thingspeak_example		

B Fill in your Wi-Fi / ThingSpeak credentials

Fill in your Wi-Fi name and Password, along with the Channel ID and Write API Key to the code. (see step 3)

💿 рос	I_kit Arduino 1.8.13	
File Ec	lit Sketch Tools Help	
00		
pool	kit	
1	<pre>#include <iot_cmd.h></iot_cmd.h></pre>	
2	<pre>#include <esp8266wifi.h></esp8266wifi.h></pre>	//include esp8266 wifi library
3	<pre>#include "ThingSpeak.h"</pre>	//include thingspeak library
4	<pre>#include <sequencer4.h></sequencer4.h></pre>	//imports a 4 function sequencer
5	<pre>#include <sequencer1.h></sequencer1.h></pre>	<pre>//imports a 1 function sequencer</pre>
6	<pre>#include <ezo_i2c_util.h></ezo_i2c_util.h></pre>	//brings in common print statements
7	<pre>#include <ezo_i2c.h> //include the EZO I2C library from <u>https://</u></ezo_i2c.h></pre>	github.com/Atlas-Scientific/Ezo_I2c_lib
8	<pre>#include <wire.h> //include arduinos i2c library</wire.h></pre>	
9		
10	WiFiClient client;	//declare that this device connects to a Wi-Fi network,
11		
12	//Fill in your Wi-Fi / ThingSpeak Credentials	
13	const String ssid = "Wifi Name";	//The name of the Wi-Fi network you are connecting to
14	const String pass = "Wifi Password";	//Your WiFi network password
15	<pre>const long myChannelNumber = 1234566;</pre>	//Your Thingspeak channel number
16	<pre>const char * myWriteAPIKey = "XXXXXXXXXXXXXXXXX;;</pre>	//Your ThingSpeak Write API Key
17	//	

If you do not have a pump attached, you can just skip this part. The code is rather self explanatory. You set what parameters will trigger the pump to engage.

e comparison
) he

Step 6 Setting up the HUZZAH board

A Set the target CPU to flash

Tools> Board> Adafruit Feather HUZZAH ESP8266

🥺 pool_kit Arduino	1.8.13		
File Edit Sketch Too	ls Help		
	Auto Format	Ctrl+T	
	Archive Sketch		
	Fix Encoding & Reload		
	Manage Libraries	Ctrl+Shift+I	
enum reading_	Serial Monitor	Ctrl+Shift+M	EVICES, READ_RESPONSE };
//step 1 tell	Serial Plotter	Ctrl+Shift+L	
//step 4 tell			g we just received
//step 3 cons	WiFi101 / WiFiNINA Firmware Updater		· · · · · · · · · · · · · · · · · · ·
anun naading	Board:		Boards Manager
enum reading_	Upload Speed: "115200"	2	
bool polling	CPU Frequency: "80 MHz"	3	Arduino Yún
bool send_to_	Flash Size: "4MB (FS:2MB OTA:~1019KB)"	Arduino Uno	
int return co	Debug port: "Disabled"	;	Arduino Duemilanove or Diecimila
Int return_co	Debug Level: "None"	;	Arduino Nano
uint32_t next	IwIP Variant: "v2 Lower Memory"	;	Arduino Mega or Mega 2560
const unsigne	VTables: "Flash"	;	Arduino Mega ADK
unsigned int	Exceptions: "Legacy (new can return nullptr)"	,	Arduino Leonardo
const unsigne	Frase Flash: "Only Sketch"	;	Arduino Leonardo ETH
	SSI Support: "All SSI ciphers (most compatible)"	,	Arduino Micro
const unsigne	Port	,	Arduino Esplora
const unsigne	Get Board Info		Arduino Mini
void setup()			Arduino Ethernet
	Programmer: "AVRISP mkll"	2	Arduino Fio
pinMode (EN_	Burn Bootloader		Arduino BT
pinMode (EN_EC,	OUTPUT):		Adafruit Feather HUZZAH ESP8266
digitalWrite(E	N_PH, LOW);		LilyPad Arduino

B Adjust CPU Settings

Make sure the CPU settings on the Adafruit Feather HUZZAH ESP8266 are correct. To adjust the CPU settings, click **Tools**.

For reference, this is what Atlas Scientific set the CPU settings to. (your options may not be exactly the same, just try and match them as closely as possible.)

💿 р	ool_ki	t Ardu	ino 1.8	3.13		
File	Edit	Sketch	Tools	Help		
				Auto Format	Ctrl	+T
	-			Archive Sketch		
				Fix Encoding & Reload		
//ei	nable	e pins		Manage Libraries	Ctrl-	+Shift+I
cons	st in	IT EN_	· .	Serial Monitor	Ctrl-	+Shift+M
cons	st in st in	nt EN_		Serial Plotter	Ctrl	+Shift+L
Ezo_	_boar	d* de		WiFi101 / WiFiNINA Firmware Updater		
110	ate t	he le		Board: "Adafruit Feather HUZZAH ESP8266"		>
cons	st ui	int8 t		Upload Speed: "115200"		>
		_		CPU Frequency: "80 MHz"	>	
enur	m rea	ading_	. 1	Flash Size: "4MB (FS:2MB OTA:~1019KB)"	>	
//s1	tep 1 tep 2	cons		Debug port: "Disabled"		>
//s1	tep 4	tell		Debug Level: "None"		>
//s1	tep 3	3 cons		lwIP Variant: "v2 Lower Memory"		>
enur	m rea	ading		VTables: "Flash"		>
				Exceptions: "Legacy (new can return nullptr)"		>
boo!	l pol	ling		Erase Flash: "Only Sketch"		>
boo.	l ser	nd_to_		SSL Support: "All SSL ciphers (most compatible)"		>
int	retu	irn_co		Port		>
		_		Get Board Info		
uint	t32_t	next		Programmer "AV/RISP mkll"		>
uns	ianea	isigne i int		Purp Postloader		
	- 9			burn bootloader		

Step 7 See the readings

Open your Arduino serial monitor.

(You must have the serial monitor set to the com port from the Adafruit Feather HUZZAH)

Set to carriage return and 9600 baud.

The Wi-Fi Pool Kit will always attempt to connect to ThingSpeak on bootup.

•		
		Send
RTD: 24.55 PH: 3.94 ORP: 232.40		
RTD: 24.55 PH: 3.94 ORP: 233.10		
RTD: 24.55 PH: 3.94 ORP: 233.70		
RTD: 24.55 PH: 3.94 ORP: 234.30		
sent to thingspeak		
RTD: 24.55 PH: 3.94 ORP: 236.40		
RTD: 24.55 PH: 3.94 ORP: 236.40		
RTD: 24.55 PH: 3.94 ORP: 237.00		
RTD: 24.55 PH: 3.94 ORP: 237.60		
RTD: 24.56 PH: 3.94 ORP: 237.90		
RTD: 24.56 PH: 3.94 ORP: 238.20		
RTD: 24.56 PH: 3.94 ORP: 238.90		
sent to thingspeak		
RTD: 24.56 PH: 3.94 ORP: 239.80		
RTD: 24.56 PH: 3.94 ORP: 239.80		
Autoscroll Show timestamp Carriage return V 9600 baud	~	Clear output

If it cannot connect to your Wi-Fi you will see this:

0		
		Send
RTD: 24.60 PH: 3.94 ORP: 230.90		
RTD: 24.60 PH: 3.94 ORP: 231.30		
connecting to wifi		
RTD: 24.60 PH: 3.94 ORP: 231.60		
RTD: 24.60 PH: 3.94 ORP: 232.20		
RTD: 24.60 PH: 3.94 ORP: 233.20		
RTD: 24.60 PH: 3.94 ORP: 233.60		
connecting to wifi		
RTD: 24.60 PH: 3.94 ORP: 234.00		
RTD: 24.60 PH: 3.94 ORP: 234.40		
RTD: 24.60 PH: 3.94 ORP: 235.10		
RTD: 24.60 PH: 3.94 ORP: 236.10		
connecting to wifi		
RTD: 24.60 PH: 3.94 ORP: 236.70		
RTD: 24.60 PH: 3.94 ORP: 237.00		
Autoscroll Show timestamp Carriage return V 9600 baud	~	Clear output

Entering the **poll** command will stop the Wi-Fi Pool Kit from uploading the readings to thingspeak, while you debug your Wifi problems.

Step 8 Sensor Calibration

Atlas Scientific created a list of calibration commands that are built into the library. Type in **help** to see a list of commands.

	- C]	×
		Se	nd
> help			
Atlas Scientific I2C pool kit			
Commands:			
datalog Takes readings of all sensors every 15 sec send to thingspeak Entering any commands stors datalog mode.			
poll Takes readings continuously of all sensors			
ph:cal,mid,7 calibrate to pH 7			
ph:cal,low,4 calibrate to pH 4			
ph:cal,high,10 calibrate to pH 10			
ph:cal,clear clear calibration			
orp:cal,225 calibrate orp probe to 225mV			
orp:cal,clear clear calibration			
rtd:cal,t calibrate the temp probe to any temp value			
t= the temperature you have chosen			
rtd:cal,clear clear calibration			
Autoscroll Show timestamp Carriage return V 9600 baud	Cle	ar outp	ut

A The poll command

Send the command **poll**; This will let you see the readings once per second and it will stop uploading to ThingSpeak while you calibrate.

B Calibrate pH

When calibrating pH, you must always calibrate to pH 7 first.

Remove the soaker bottle and rinse off the pH probe. Remove the top of the pH 7.00 calibration solution pouch. Place the pH probe inside the pouch and let the probe sit in the calibration solution until the readings stabilize. This will take about 1 - 2 mins.

Rinse off the probe and repeat this process for both **pH 4.00** and **pH 10.00**.

C Calibrate ORP

Rinse off the probe, and insert it directly into the 225mV calibration solution, and watch the readings. Wait for the ORP readings to stabilize. This will take about 10 - 60 seconds.

D Calibrate Temperature

Calibrating the PT-1000 temperature probe is not required. However, if you want to, a simple method to calibrate the probe is to place the PT-1000 into boiling water. Then issue command **rtd:cal,t**

100 °C

Calibration Complete

Step 9 Almost done!

Once you are finished with calibration, issue the **datalog** command to resume taking a reading every 15 seconds and uploading it to thingspeak.

To see the data on your phone, download the ThingSpeak app.

Setup Complete!

